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A first-principles numerical method for calculation of the electronic structure of the point impurities in the
single-walled carbon nanotubes (SWNTs) based on a Green’s function technique is developed. The host
SWNTs electron Green'’s function is calculated using a linear augmented cylindrical wave theory. The Green’s
function of the impurities is calculated in the terms of matrix Dyson equation. The impurities are described by
the single-site perturbed muffin-tin potentials in otherwise perfect nanotubes with the rotational and helical
symmetries. Due to the account of these symmetry properties, the method is developed applicable to any tubule
including the chiral SWNTs with point defects independent of the number of atoms in translational unit cell of
the host systems. We give results for the local densities of states (DOSs) of the boron and nitrogen impurities
in the metallic (7,7), (5,5), and (10,10) semimetallic (8,2) and (9,6), and semiconducting (13,0), (12,2), (11,3),
(10,5), (8,7), and (10,0) SWNTSs, as well as in the polyynic and cumulenic carbynes. It is shown that the boron
and nitrogen defects do not destroy the metallic character of electronic structure of the armchair tubules. An
increase in the DOS in the Fermi energy region is the most significant effect of boron and nitrogen dopants in
the case of metallic and semimetallic SWNTSs. In all the semiconducting SWNTSs, in the vicinity of optical gap,
there is a drastic difference between the effects of the boron and nitrogen impurities. The boron-related states
close the gap of the perfect tubules. In the gap region, the effects of nitrogen atom are restricted with a minor
growth of the local DOSs just below and above the Fermi energy. Beyond the Fermi-energy region up to the
s bottom of the valence bands, the effects of impurities are similar in all the tubules. As one goes from carbon
to the boron, the local DOS decreases, and the peaks almost disappear, but the nitrogen local DOS is somewhat
greater than that of the carbon. In the semiconducting polyynic carbyne, the boron and nitrogen defects close
the gap between the valence and conduction bands. In the case of metallic cumulenic carbine, if the boron or

nitrogen atom takes the place of carbon, the local DOS at the Fermi level increases.
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I. INTRODUCTION

In their simplest form, the defect-free single-walled
carbon nanotubes (SWNTs) are the hexagonal networks of
covalently bound carbon atoms in various cylindrical struc-
tures. The SWNTs with perfect honeycomb carbon arrange-
ments have emerged as the attractive materials for molecular
electronic applications because the SWNTs can be either
one-dimensional metals, semiconductors, or even quantum
wires depending on their diameter and chirality.!~® Based on
the SWNTSs, the single-electron and field-effect transistors,
chemical sensors, emission, electromechanical, and electro-
magnetic devices have been realized experimentally.”!” Car-
bon nanotubes are famous for their almost perfect structure;
the high-quality SWNTs are confirmed to contain only one
defect per 4 um on average.'® However, some defects are
still present in the SWNTs. The SWNTs may have various
atomic-scale point defects such as the vacancies, impurities,
and adatoms on the tubules walls, kinks, junctions, as well as
the different topological defects such as pentagon-heptagon
pairs, all of which can appear during the nanotube growth or
can be created by external action. The ion, electron, and light
irradiations are successful in creating individual atomic-scale
nanotube vacancies;'*%? it has been suggested to dope nano-
tubes with the H, B, and N atoms using the ion irradiation
t00.”3 The experimental reversible creation and annihilation
of defects on the SWNTSs with the tip of a scanning tunneling
microscope (STM) have been reported.”* The presence of
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structural defects results in a change in the SWNTs
electronic-structure, transport properties, optical absorption,
specific heat, magnetic susceptibility, and even a single de-
fect can have tremendous electronic effects in one-
dimensional conductors.?>?° A local modification of the elec-
tronic structure of carbon nanomaterials is important for
development of the carbon-based nanoelectronics. Particu-
larly, the point defects in the SWNTs can act as the gate-
tunable electron scatters, and SWNTs with defects can be the
basis for new types of electronic devices.”?® Inducing defect
sites in the SWNTSs structure may give rise to complex func-
tional devices such as single-electron transistors operable at
room temperature.'® The defects can control the operation of
nanotube-based chemical sensors.?” Moreover, the defects
can impede the adsorption of quantum gases inside a bundle
of carbon nanotubes and give rise to irradiation-mediated
pressure buildup inside nanotubes.? The defective nanotubes
could be used as catalysts, and could facilitate thermal dis-
sociation of water.> The dangling bonds of vacancy can pro-
vide active sites for atomic absorption or serve as a bridge of
chemical connection between two tubes. Finally, the struc-
tural defects play a major role in toxicity of the nanotubes.?!

Understanding how imperfections influence the electronic
behavior of materials is of fundamental importance. The
nonideal nanotubes are therefore intensively studied. In indi-
vidual metallic SWNTs, defects can be successfully charac-
terized by transport measurements and scanned gate micros-
copy because a resonant electron scattering by defects in the
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nanotube is varied by the gate voltage.”> STM and scanning
tunneling spectroscopy (STS) are the methods which provide
direct information both on atomic and local electronic struc-
ture of the carbon nanotubes.??33 Defects are easily detected
in Raman spectroscopy because they break the symmetry of
the SWNT, relax the momentum conservation rules that gov-
ern Raman-scattering processes, and locally stiffen the lat-
tice. These spectra can be used to differentiate between posi-
tively and negatively charged defects. It also reveals that
phonons and electrons associated with doped tubes behave
differently from their brethren in unperturbed carbon
nanotubes.’*3> In the individual SWNT, using a selective
electrochemical method, one can label the point defects and
make them easily visible for quantitative analysis; a se-
quence of electrochemical potentials applied to SWNT can
selectively nucleate a metal deposition at the sites of highest
chemical reactivity.'® The signatures of defects can be de-
tected with x-ray photoelectron spectroscopy by monitoring
changes in the 1s C peak shape, which is sensitive to the type
of carbon bonding, and with the electron-spin-resonance
method.3¢

The foundation stones of the SWNTs defects electron-
structure theory were laid down more than 10 years ago
in the terms of the m-electronic tight-binding studies.’’*
The calculations based on the first models have shown that
structural defects in the underlying carbon lattice can sub-
stantially modify the electronic properties of SWNTs due
to the formation of the defect states and resonant electron
scattering at corresponding energies. For example, it was
predicted using the tight-binding 7-band approximation
with surface Green’s function matching method that intro-
duction of isolated pentagon, heptagon, or the single
pentagon-heptagon pair defects into the hexagonal net-
work of the SWNT can change the helicity of the tube and
result in a formation of nanoscale metal/semiconductor
or semiconductor/semiconductor junctions.’®* The tight-
binding recursion model has shown that the one, two, and
three pentagon-heptagon pair topological defects in the hex-
agonal network of the SWNTs form resonant states (sharp
peaks) in the density of states (DOS) and govern the elec-
tronic behavior around the Fermi level (Ey).%’ Similar ap-
proach shows that a pure carbon quantum dot can be de-
signed by introducing several pentagon-heptagon defects in
the SWNTs and predicts the energies of discrete levels in
these systems.?® According to the tight-binding supercell
data, the topological bond rotation (Stone-Wales) defects
close the gap in large-gap SWNTSs, open the gap in small-gap
nanotubes, and increase the DOS in metallic tubules.*® For
the simplest possible defect, a single vacancy, the quantum
conductance was calculated as a function of tube radius
within the Landauer formalism in the -tight-binding
scheme.3*#-47 Investigated in the terms of the m-electronic
recursion and Green’s function approach, the calculated DOS
and STS images of both metallic and semiconducting
SWNTs predict the vacancy-induced states at the Fermi en-
ergy and hillocklike features in the atomically resolved STM
images.*®* The m-tight-binding transfer-matrix method was
used to calculate the reflection coefficient for a barrier cre-
ated by point defects in the armchair and zigzag SWNTs. 4?43
The r-electronic and transport properties of the SWNTs with
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defects were also studied within a k-p scheme and Green’s
function scattering formalism for a model strong short-range
potential >>3! The result obtained in this scheme are shown
to agree essentially with the tight-binding models.>!-2

Going beyond the mr-electron theory, the effects of vacan-
cies, substitutional boron, or nitrogen impurities, and local
topological defects on the DOS and quantum conductance of
the metallic (10,10) SWNT were first calculated within the
framework of density-functional theory (DFT) using an ab
initio pseudopotential method and a plane-wave basis set.>
The DOS and conductance have shown quite different be-
havior than the prediction from the m-electron model. In the
case of vacancies, the tight-binding model predicts the single
DOS peak exactly at the Fermi level;342434546.54 however,
the electron-hole symmetry is no longer valid in the realistic
calculation, and the position of the peak moves. Moreover,
the two other narrow peaks originating from the broken o
bonds around the vacancy not found in the m-tight-binding
model were obtained in the pseudopotential calculations. For
the substitutional impurities and Stone-Wales defect, the
DOS peaks are located away from the Ej too, and the con-
ductance close to Ey is not significantly affected by the de-
fects thus showing that the conductance at the Ej is quite
robust with respect to the intratube local defects. According
to similar ab initio pseudopotential calculations combined
with the STM data, there is no significant modification of the
m-band DOS due to B doping; the B-related acceptor states
could only be detected in the o band.” In this case, the
observed prominent acceptorlike feature near the Fermi level
and closing of band gap of the semiconducting tubes are
explained in the terms of nanodomains of dopant islands but
not by the isolated B substitutional atoms. Presumably, the
N-donor structure is located around 0.35 eV above the Fermi
level.”> The DFT pseudopotential all-electron code with
atom-centered numerical and plane-wave basis functions ap-
plied to vacancies in the armchair (n,n) (n=4,6,8) and zig-
zag (10,0) SWNTs shows that the positions of vacancies
states, their population, and electrical activity depend on the
SWNTs diameter.’® In the recent work,?? the local DOS of
the single, double, and triple vacancies, of the one and two
adatoms on wall of tubule, of the vacancy/adatom com-
plexes, as well as of the Stone-Wales defects in the semicon-
ducting (10,0) SWNT were studied using virtually the same
first-principles DFT technique. The results are compared
with the low-temperature scanning tunneling microscopy and
spectroscopy of the Ar*-irradiated SWNTs. According to
these data, in some cases, not the new states in gap can be
observed due to the impacts of energetic ions, but changes in
the local DOS in the valence and conduction bands only. On
the contrary, other defects give rise to the single and double
peaks in the band-gap region or complex multipeak configu-
rations with nonzero intensity almost in the entire gap re-
gion. Finally, the pseudopotential supercell calculations for
electric field dependence of the electronic and structural
properties of the defective and radially deformed SWNTs
are reported. The calculations show that band structure of
the defective SWNTs varies quite differently on the ap-
plied electric field and strain from that of the perfect
nanotubes.>’>° The nonlinear elastic properties of the radi-
ally deformed and defective (8,0) tubule were also investi-
gated recently.®”
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All the ab initio calculations have serious disadvantages
because they were performed using a supercell model exhib-
iting a periodic arrangement of defects in the nanotube, the
tubule with defects being arranged in a bulk periodic lattice.
(As a typical example, the nanotubes composed of 2—6 unit
cells and having 80-240 atoms were used for simulations of
the (10,0) SWNT with defects in the recent work.’?) The
supercell calculations necessarily include interaction effects
between the periodically arranged defects and tubules. More-
over, the chiral SWNTs have prohibitively large unit cells
which made impossible simulations of defects in these tu-
bules using the ab initio supercell models.>® Finally, the
ideas of the Green’s function theory for electron structure of
defects in the tubules were lost in the ab initio supercell
calculations. The Green’s function approach used already in
the original m-electron models is more appropriate to treat
the problem since it takes full advantage of the periodicity of
the host SWNT structure and short range of the defect po-
tential. Note that the Green’s function method is widely used
in the ab initio calculations of defects electronic structure in
the bulk materials.%'~¢7

In this paper, we present a method for treating the elec-
tronic structure of defects in the SWNTs which is generali-
zation of a linear augmented cylindrical wave (LACW)
theory of the perfect SWNTSs band structure.%®-77 The method
avoids using the supercell and superlattice geometries and
combines the advantages of density-functional ab initio
theory with the Green’s function approach to the point de-
fects electronic structure. The LACW method is just a refor-
mulation for cylindrical multiatomic systems of the linear
augmented plane-wave technique well known in the
electronic-structure theory of bulk materials.”% The ac-
count for the cylindrical geometry of the nanotubes in an
explicit form offers the obvious advantages and is the main
argument for using the cylindrical waves in the theory of
nanotubes electronic structure. Here, we use the symmetry-
adapted version of the LACW method in which one takes
into account the rotational and helical symmetries of the
ideal host SWNTs.”! In this case, the cells contain only two
carbon atoms, and the theory becomes applicable to any
SWNT with point defects independent of the number of at-
oms in the translational unit cell of the host SWNTs. Previ-
ously, the LACW method was successfully used to correlate
the structures of the ideal single-walled and double-walled
carbon tubules with the their electron properties.

In Sec. II, we start from the short review of the LACW
approach to the SWNT band-structure theory. Then, in the
terms of the LACW technique, we calculate the Green’s
function of the perfect SWNT using a spectral representa-
tion. The Green’s function of point impurity is evaluated in
the terms of the matrix Dyson equation. The results for the
local DOS of the boron and nitrogen impurities in the metal-
lic, semimetallic, and semiconducting SWNTs and carbynes
are presented in Sec. III. Finally, we discuss some of the
limitations of such an approach and give conclusions.

II. THEORY

A. Structure of nanotubes

The perfect defect-free nanotubes can be constructed by
rolling up a single graphite sheet. One can make such a
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seamless tubule without any special distortion of their bond-
ing angles other than the introduction of curvature to the
carbon hexagons through the rolling process. Each tubule
can be labeled by the pair of integers (n;,n,), (wWhere n,
=n,=0), which, together with C—C bond length d¢_,
determine a geometry of the SWNTs. The perfect graphitic
tubules defined by the integers (n,,n,) can also be defined in
terms of their helical and rotational symmetries.*> In order to
construct the carbon SWNT, one has to map the first atom to
an arbitrary point 7 on the cylinder surface, which requires
that the position of the second one T, be found by rotating
this point,

n1+n2
®T =T
2 2 2
n1+n2+n1n2

(1)

radians about the cylinder axis in conjunction with a transla-
tion,

de_c ny—ny
Or. = 2
T 2 (n%+n§+n1n2)“2 @

along this axis.

Let us map the first C atom to the point with cylindrical
coordinates Z;=0, ®,=0, and R;=Ry;. In this case, the
cylindrical coordinates of the second C atom are Z2=5T2,
<I)2:(IJTZ, and R,=Ryy, where

dC—C \’F

3
Ryr= (”%+”%+n1”2)1/2 (3)
2T

is the SWNTs radius.

The cylinder axis coincides with a C, rotational axis for
the tubule, where v is the largest common divisor of n; and
n,. Thus, the positions of these first two atoms can be used to
locate 2(v—1) additional atoms on the cylinder surface by
(v—1) successive 27/ v rotations about the cylinder axis. Al-
together, these 2v atoms complete the specification of the
helical motif that can then be used to tile the remainder of
the tubule by repeated operation of a single screw operation
S(h,w) representing a translation,

_3dec v 3B v (4)
) (n%+n%+n1n2)”2_ 47  Ryp
along the cylinder axis in conjunction with a rotation,
np1+ nopy + (nopy +nypy)/2
0=27 1P1+ oy + (nopy +1yp)) (5)

n%+n§+n1n2

radians about this axis. The angle w is defined modulo 2,
the positive integers p, and p, are obtained from equation

pony—piny = v. (6)

Thus, there are only two atoms in the minimum cell of the
perfect SWNTs, and we can use two indices {n, a} to specify
a particular carbon atom of the tubule, where n is the number
of the two-atomic cell and a=1 or 2.
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In calculations of the SWNTs with substitutional boron
and nitrogen impurities, we neglect a possible lattice relax-
ation in the defect regions because the covalent radii of the
boron (0.82 A) and nitrogen (0.75 A) atoms differ not too
much from that of the carbon (0.77 A) and the SWNTs lat-
tice is known to be very rigid. In this approximation, the
atomic coordinates calculated above can be also used for the
SWNTs with point impurities. Note that according to the
pseudopotential data,®' the equilibrium position of nitrogen
atom is almost unchanged with respect to the corresponding
C atoms in the undoped SWNTs, being moved by atmost
0.01 A.

B. One-electron Hamiltonian and cylindrical
muffin-tin potential

In the LACW method, a concept of one-electron orbitals
is used, the separate electrons being characterized by wave
functions of their own or spin orbitals. It is assumed that
each spin orbital can be written as product of spatial and spin
functions W(r)a and W(r) B, where a and S are the wave
functions of electrons with spin “up” and “down,” respec-
tively. The spatial function W(r) is called an orbital. In the
LACW method, the orbitals \Ifj(r), together with the corre-
sponding one-electron energies E;, are found by solving the
one-electron Schrodinger equation,

HY(r) = E;¥,(r) (7)

with effective one-electron Hamiltonian (in atomic Rydberg
units)

H=-A+V(r). (8)

This Hamiltonian contains the kinetic-energy operator, —A,
and the operator V(r) describing the summed action on the
electron in consideration of all the other electrons in the sys-
tem and all its nuclei.

In the LACW method, the approximations are made in the
sense of muffin-tin (MT) potentials and local density-
functional theory only. The electronic potential is spherically
symmetrical in the (),, regions of MT spheres of atoms
{n,a} and constant in the interspherical region (). Inside
these spheres, we calculate the electron potential by means of
the local-density approximation with Slater exchange.’?-84
As usually, the radii of the MT spheres (ry;=dc_c/2) were
chosen so that the atomic spheres touch but do not overlap;
the sphere radius was kept the same for the carbon, boron,
and nitrogen atoms. An infinite motion of an electron is ob-
viously limited in the case of nanotubes by their size and
shape. In terms of the LACW method, the atoms of nanotube
are considered to be enclosed between two essentially im-
penetrable cylinder-shaped potential barriers €}, and (), be-
cause there are two vacuum regions (), on the outside and on
the inside of the tubule. The radii @ and b of these barriers
are chosen so that the region confined by barriers accommo-
dates a significant portion of the electron density of the tu-
bule. As in our previous calculations of the perfect carbon
SWNTs,”! we take a=Ry;+2.3 and b=Ry;—2.3 a.u.
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C. Symmetry of wave functions

In the perfect nanotube with the C, symmetry, the nuclei
are arranged in a regular array described by a set of rotations
by the angles w,t=(27/v)t with arbitrary integer ¢. There-
fore, we can introduce the discrete values of a wave vector
kgp=A+vM corresponding to the periodic rotation operator
and write using a cylindrical coordinate system Z,®,R,

W(Z,® + tw,,R) = MM (7 D R), )

where M=0, =1,... and A=0,1,...v—1.

The perfect nanotube, being infinite in Z direction, is also
invariant under the screw S(h,w) operation representing a
translation 4 along this axis in conjunction with a rotation w

about it.> The screw transformations S (h, w) form an Abelian

group isomorphous with the usual translation group f(h)
Thus, according to Bloch’s theorem, the wave function
W(Z,®,R) can be characterized by a continuous wave vector
Kp=k+kp,

W(Z + th,® + tw,R) = %PV (7 O R). (10)

Here, vectors k belong to the first one-dimensional
Brillouin zone —(7/h) <k=(m/h) and kp=2(7/h)P, where
P=0,=*1,...

Finally, in the LACW method, the one-electron eigen-
functions ¢, (r|k,A) of the ideal nanotube are written as the
linear combinations of the basis functions W p,y(r|k,A),

KA) = D) dhyn(k, AW pyn(r
PMN

h(r K,A). (11)

Here, \ is a band index. The coefficients a},,(k,A) and
corresponding energy eigenvalues F,(k,A) are determined
from a secular equation. The basis functions W pyn(r|k,A)
and consequently #, (r|k, A) must satisfy the symmetry con-
ditions (9) and (10).

D. Interspherical region

In the interspherical region of the nanotube, the basis
functions W py,n(r |k, A) are the solutions of the Schrodinger
equation,

[AiRi 1 i} v®) Nz R®)
| RoR" R TR T 92| o
=EV(Z,R,®). (12)

Due to cylindrical symmetry of the potential U(R),

UR) 0 b=R=a (13)
“|le R<bR>a’

the solutions of Eq. (12) have the form’!

2
®
Epyn(k,A) = [k +kp—(A+ VM)Z} + (K\L+VM|,N)2,

(14)
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Vpun(r[k, D cq,q
= ———exp i{ {k tkp—(L+ vM)g}Z+ (L + vM)®
N27h/v h
X [CL}{;[I:N]L+VM(K|L+VM\,NR) + Cl)ll/i,l}VYL+vM(K|L+vM\,NR)]~

(15)

Here, J;, 1 and Y, are the cylindrical Bessel functions of
the first and second kinds, and N is a radial quantum number.
The function Wpyy(r|k,L)ycq,, should vanish at R=a and
R=>b and be normalized; these three conditions determine the
C;j}N, Chive and K, v-"" The function W pyn(r|k, L), a,
is referred as cylindrical wave; it corresponds to the free
movement of electron in the infinite cylindrical layer with
the C, rotational and S(h,w) screw Z axis and satisfies the
symmetry conditions (9) and (10).

E. MT region

Inside the MT sphere {n, a}, in the local spherical coordi-
nate system r, 0, ¢, the basis functions W pyn(r|k, A) are ex-
panded in spherical harmonics Y,,(6, ¢),

(MT2

\N2h/v
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o ]

KA)|req, =2 20 [Apk, A)uf“(E{,r)
1=0, m=-1

+ Bl A “(E 1) 1Y (7).
(16)

\I,na,PMN(r

Here, 7=(6,¢), uj“ is the solution of the radial Schrodinger
equation,

1 &2 na no l(l+ l) noa
;ﬁ(mz )+ | EJ = Viyo(r) = 2 up = (17)

for energy E}“, uf“(E},r)=0u}*(E}*,r)/ JE}®, and V,,(r) is
the local density spherically symmetric potential in the re-
gion of the MT sphere {na}. Inside the MT spheres with
radius ryaT, the functions u;*(r) are normalized, and the func-
tions 4 “(E;*,r) and uj*(E]",r) are orthogonal. Since the
LACW wave functions are defined differently within the MT
spheres and surrounding volume, the coefficients Af:%f\;(k,/\)
and B;’I‘flrffl(k,A) in Eq. (16) are selected so that both the
LACW W, n(r|k,A) and its radial derivative have no dis-
continuities at the boundaries of the MT spheres.®®-7° Finally,
in the region of the MT sphere {na} with coordinates

{Z, s @0, R0}, the basis function is written as’!

Vonun(rlk,Alrca, = na () (AeM) gy i{ [k +kp—(A+ vM);l—u}ZM +(A+ vM)(I),m}

©

JA Y. A
X 2 [CM,NJm—(AH/M)(K\A+VM\,NRna) + CM,NYWL—(A+VM)(K|A+VM|,NRna)]

m=—x

y i . 1)0-5(m+m|)+lil[ 21+ 1)(I = |m])! } 12

I1=|m| (l + |m|)'
X [al™™ (TN, Ay (r, EF) + bt (2T |k, A) i (r, EF) Y (7). (18)

The following notations have been used above:

alMN (TN, A) = V(AT A o E0) = 1PN (T, A i o (2T, (19)
Bima (o I A) = 1T (gl [, Mu o (e = L™ (I, Ay o) (20)

where u;, =duj*/dr and i, =du;"/dr are radial derivatives of the uj* and u}* functions; I, and I, are integrals of the
augmented Legendre polynomials P|lm|,

—7/2

/2
12=f exp{i[<k+kp—(/\+VM)%)rnMaTcos 0]}
—/2

X [i(k +kp—(A+ VM)%)COS 00, (K s upt| N SID 0) + (172) K4 ppg) v SiD 6

/2
I, = f exp{i[<k+ kp— (A + vM)%)rnMaT cos 0} }Jm(KAH,M,NrnMaT sin 0)P|lm|(cos 0)sin 6d0, (21)

X [Jm_l(K|A+,,M|’NrnMaT sin 6) —J,,,+1(K|A+,,M|,NrnMaT sin H)]Pll’”‘(cos f)sin 6d6. (22)
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FIG. 1. (Color online) Radial dependence of the V(r)r function
in the region of MT spheres of the carbon, boron, and nitrogen
atoms of the (5,5) SWNT. Here and in Fig. 2, Rydberg atomic units
(a.u.) are used.

In angular momentum representation, one can determine a
scattering ¢ matrix,

MT
t?a(E) - f b jl(\’/’Er) Vna(r)u,lla(nE)rzdr (23)
0

for the potential V,,,(r). Moreover, in the linear methods,”8-80

one calculates the function u/“(E,r) in the terms of exact
solution u;“(E}“,r) and its energy derivative u}*(E}*,r) at
the fixed energy Ej“,

w/“(E,r) =u(E}%r) + (E- E}“)u/“(E}%r). (24)

For (5,5) SWNT, Figs. 1 and 2 show the numerically cal-
culated radial dependence of the potentials inside the spheres
and an energy dependence of the scattering ¢ matrices of the
carbon, boron, and nitrogen atoms. The MT potential V(r)
decreases as one goes from the boron to carbon and from
carbon to nitrogen and the product V(r)r is equal to the
nuclear charge at r=0. The MT spheres of the carbon, boron,
and nitrogen spheres contain 3.62, 2.74, and 4.91 electrons,
respectively.

F. One-electron Green’s function

In the band-structure calculations, the solution of the one-
electron Schrodinger Eq. (7) for the single-particle wave
functions and corresponding energies represents the central
problem. However, the calculation of the wave functions and
energies can be avoided, if instead the single-particle Green’s
function G(r,r’;E) which is the solution of the Schrédinger
equation with a source at position r’,

{-A+V(r)-E}G(r,y";E)=-8r-r’) (25)

is determined.%-8>
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FIG. 2. (Color online) Energy dependence of the scattering ¢
matrix of the carbon, boron, and nitrogen atoms of the (5,5) SWNT.

In terms of a complete set of the eigenfunctions W (r)
corresponding to the eigenvalues E;, the following spectral
representation for the retarded Green’s function can be ob-
tained:

W (r)¥(r'
Gy =3 ) (26)
7 E-Ej+ie
representing, in the limit of Im E=e— 0%, an outgoing wave
at r with a source term at r’. From the above equation and
identity

1
E-E;+ie

=—i7r5(E—Ej)+73< ) (27)

E-E;
where P stands for the principal part, it follows that the
expectation value of any physical quantity represented by an

operator A can be harvested via the relation®83

Erp
(Ay=- %TImJ Ti{AG(E)]dE, (28)

—o0

if the matrix elements and trace in the right-hand side of this
equation are calculated using the full basis set. Therefore, the
Green’s function contains all information which is given by
the eigenfunctions, and if the Green’s function can be com-
puted, then all physical properties of the system can be
found. Particularly, the imaginary part of G(r,r;E) is di-
rectly related to the spectrally and space-resolved density of
states,

p(r;E)=— }Tlm G(r,r;E), (29)

and the local density of states
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pu(E)=— lJ Im G(r,r;E)dr (30)
Ty

of a volume V is obtained by integrating over this volume.
The real problem is the evaluation of the Green’s function
for the system of interest; in our case, it is the nanotube with
point defect.

The equation for the Green’s function 5(r,r;E) of the
SWNT with impurity can be written as

AV(r)G(r,x";E).
(31)

{I:I— E}G(r,r';E)=-8r-r') -

Here, H is the Hamiltonian of the perfect SWNT and

AV(r)=V(r)-V(r) is the difference between the potentials of
the impurity and perfect tubules. It follows from this equa-

tion that the Green’s function é(r,r' ;E) corresponding to
the new Hamiltonian H+AV(r) is related to the Green’s

function G(r,r’;E) corresponding to H via the Dyson inte-
gral equation

5(r,r’;E)=G(r,r’;E)+fG(r,r”;E)AV(r”)é(r”,r’;E)dr".
(32)

Most important is that the perturbed potential AV(r) is well
localized near the impurity, while the perturbed wave func-

tions W(r,r’;E) accurately described by the Lippmann-
Schwinger equation

f'(r,r';E):‘I’(r,r’;E)+fG(r,r”;E)AV(r”)\f'(r”,r’;E)dr"

(33)

are not localized.

G. One-electron Green’s function for array of MT spheres

Consider the Green’s function of an array of spherically
symmetric nonoverlapping potentials. The potential is given
by

Vir+R,,)=V(Z+th,® +t,w+t,w,)=V,,(r), (34)

t,=0,*1,*2,...; 1,=0,1,...,v—1, (35)

and the Green’s function is defined via
{-A+V,(r)-E}G(r+R,,.r' +R, ,;E)
== nan a'ﬁ(r_r ) (36)

In the mixed site angular momentum representation, by in-
troducing the atom-centered coordinates, we can present the
Green’s function in the form of a series expansion based on
the solutions of the Schrodinger equation in the MT
spheres,53-66.85-87
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G(I' + Rna,l'l + Rn’a’ ,E)

l‘Sn n' '\'EE u?“(r<,E)YL(r

+ 2

LL'

Hj(r=,E)Y,(x')

M;‘“(r,E)YL(f)GZE)Z,,,'a'(E)u;/a’(r’,E)Yz,(r’).

(37)

Here, R,,, and Rnrar are the positions of atoms « and o' in
the cells n and n’, respectively; r and r’ restricted to the MT
spheres {n,a} and {n’, a'} are the local coordinate vectors of
atoms {n,a} and {n’,a’'}; r-=min(r,r’) and r- = max(r r');
L=(l,m) are the orbital quantum numbers; ZD‘Lf’ o (E) are
the energy-dependent coefficients of the Green’s function;
H}“(r,E)=u;“(r,E)+iN;*(r,E). Finally, the u/“(r,E) is
regular (converging at r—0) solution of the radial
Schrodinger Eq. (17) and the N/“(r,E) is irregular (diverging
at r—0) solution of this equation.

In Eq. (37), the first term represents the Green’s function
for the scattering problem by the central potential in vacuum
and the second one characterizes the effects of the nanotube
structure. By construction, the expression in Eq. (37) for the
Green’s function satisfies in each MT sphere {n, «} the gen-
eral solution of the Schrodinger Eq. (36) for the Green’s
function while the matrix GZUZ',’,“,(E), the so-called structural
Green’s function, describes the connection of the solutions in
the different spheres and thus contains all the information
about the multiple-scattering problem, which is in this way
reduced to the solution of an algebraic problem.

H. Structural Green’s function
1. Perfect nanotube

Now, let us determine the coefficients of the Green’s func-
tion G,/ “ (E) for the perfect SWNT, the band structure
and wave functions of the tubule being determined in the

terms of the LACW method. Let us multlply the Eq. (37) by
the u)*(r,E)r’drY; 1(r)dr and u;l, o (r' ,E)r'*dr' YL (r )dr

and integrate over MT regions of the atoms {n,a} and
{n',a'}. Then, we have
G5 (BB (E)

= i5n,n’ 5&,&’6L,L’ \“’E[a;la(E)]z
+ J f G(r+ Ryt + R, E)Y (E)Y, (1)
[9) '

><u;m(r,E)u;Z,’a,(r’,E)rzr’zdrdr’dfd?, (38)

MT
Tna

[u]“(r.E)’r*dr=1+(E - E[*)’N,,,
0

(39)
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MT
NI’D(:J‘M [ulqa(E;’“,r)]zrzdr. (40)
0

In order to calculate the integral in Eq. (38), let us apply the
spectral representation of Green’s function

2
V(rnarn’a’)

4aa*(E) al, ( )

”an o (E) =10, a raL’Lr\“”E+

LL’ n.n'

{(zn D(I =m0 + D@’
L+ |m)1(A" +|m)!

Y, A A
+ CM,NYm—A—VM(K|A+VM|,NRIICK)][C]{l/’N"Im'—A—VM’(K|A+VM",N’RYI

7lh
>< f eXp[lk( na n’a’)][alpn’lﬁjl”l]\é(r

—a/h

! PMN
a)N?r " n! f(rn Ta!

mna

+(E-EY

X pn(ks M)y (K, A) ] k.

2. Nanotube with impurity
Once the structural Green’s function G;%; “ (E) of the
perfect SWNT is known, the Green’s function for the nano-
tube with impurity can be evaluated in the terms of the ma-
trix Dyson equation,®3-6°

Z“L’? “(F)= G5 (E)

+ > Gy o (E)Atl,, "(E) ';,,“L," “(E).

N H n
n L

(43)
n.n n._n

The Atl,, —?;',, “ —1,“ are the differences between the 1 ma-
trices in the perturbed and perfect nanotubes determined by
the perturbation of the potential well localized in the MT
spheres of the impurity atoms. Since this difference is re-
stricted to the vicinity of the impurity, the Green’s function
in this subspace can be easily determined in real space by
matrix inversion. The rank of the matrices to be inverted is
given by ny(l,..+1)% here, n, is the number of perturbed
MT potentials, and [, is the maximum angular momentum
used in the calculations. In this work, for the single impuri-
ties, we neglect the perturbation of the neighboring host at-
oms taking into account in Eq. (43) only the perturbation due
to the impurity potential; this so-called single-site approxi-
mation is known to give a quite reasonable description of the

_ |mr|)!:|l/2

+ A+ vM)D, Jexp{-i[(kpr = (A + vM")w/h)Z, o + (A +vM')D,,

{- imd[E - Ey(k,A)] + 7?(
A
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—1

G(r,r' E)——EE

277N A=o J—mm

g (e, A) (' [k, A)
E- E)\(k,A) +ie

(41)

Substituting the wave functions [Eq. (18)] for r € Q,,, and
r' € O, in Eq. (41), we finally obtain

l—l’ (- 1)0.5(m+\m|+m’+|m’ [+l

v—1

> X (D)™ exp if(kp— (A + vM)0/h)Z,q

PMN p' ' N A=0

]}[CI NJm A- VM(K|A+VM\,NRna)
’a’) + CM’I’N' Yl’n’—A—VM’(K|A+VM",N’R7!’CY’)]

PMN( P'M'N' (I"

U'm'".n'a'

[

1
E-E\(k.A) ) ]
(42)

electronic structure of the impurities in crystals.®3>-% Figure 2
shows that the absolute Values of the scattering matrix ele-

ments perturbations At, —tl ¢ and At}q—t?] © decrease
strongly with increase in the angular momentum [. This re-
sults in a rapid convergence of the Green’s function and fi-
nally of the electronic properties of the perturbed SWNTs.
Particularly, /=2 or even [,,=1 give good convergence
of the calculated electronic DOSs in the regions of impuri-
ties.

~ o
Substituting the structural function G5 “ (E) to Eg.

(37), we can obtain the Green’s function G(r,r;E) for cal-
culating a variety of the physical properties of the SWNT
with impurity. In this work, we apply this approach to the
particular case of the local electronic DOS corresponding to
the MT region of the impurity atoms,

PurnalE) = Ea;““(E)[\E Im G}4"(E)].  (44)

III. RESULTS OF CALCULATIONS

Before tuning to the calculations of the SWNTs, let us
look at the impurity-related levels in a carbyne, which is the
most simple carbon nanowire with cylindrical symmetry.38-!
The polyynic carbyne (C—C=C),, is a linear chain of car-
bon atoms with alternating single and triple bonds equal to
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FIG. 3. (Color online) LACW band structure of polyynic car-
byne. Here and below, energy relative to the Fermi level.

1.34 and 1.20 A. The LACW band structure shows that the
polyynic carbyne is a semiconductor with a direct energy gap
E,=0.98 eV (Fig. 3) in agreement with experimental data
[1-2 eV (Ref. 88)].

Similar to the semiconducting SWNTs, the 7 bonding and
7 antibonding states of the polyynic carbyne form the top of
valence and the bottom of conduction bands. Due to the high
rotational symmetry of this structure, there is no mixing of
the 7 states with low-lying p, and s bands. The local DOS in
the carbon MT region of the perfect polyynic carbyne is
visualized in Fig. 4 as the imaginary part of the Green’s
function calculated by the LACW method. (Note that there is
no inner cylindrical cavity in this particular system; however,
the LACW Green’s function approach developed for the
SWNTs can be easily adjusted to this more simple case of
the nanorod geometry.)

Energy (eV)

LLASES ocoaa

ANONORORDNMON

Cc B N

Number of states (arbitrary units)

FIG. 4. (Color online) Local DOS of polyynic carbyne in the
band-gap region (upper panel) and from the bottom of s band up to
conduction band (lower panel). Here and below: perfect system (C),
the boron (B), and nitrogen (N) impurities.
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FIG. 5. (Color online) LACW band structure of cumulenic
carbyne.

The local DOSs in the MT regions of the boron and ni-
trogen impurities of the doped polyynic carbyne calculated
in the terms of the Dyson equation are plotted in this figure
too. Both the boron and nitrogen impurities close the gap
between the valence and conduction bands, the local DOS in
this region being larger for the boron atom in comparison
with the nitrogen one. The nitrogen impurity virtually does
not influence the Van Hove singularities located at +0.5 and
—-0.5 eV relative to the Fermi energy and corresponding to
the gap edges of the ideal system but the introduction of the
boron atom results in decrease in these peaks. In addition to
the states near the gap, the DOS of the perfect polyynic
carbyne forms a double peak centered at —5.5 and -6 eV. In
the case of the local DOS of boron impurity, there is not the
peak but a well-defined dip in this region; for the nitrogen, a
noticeable smoothing of the resonance is observed. The peak
of the local DOS at —17 eV corresponding to the bottom of
the s band is absent in the case of both impurities.

A cumulenic carbyne (C=C)., is a linear chain of carbon
atoms with the double bonds equal to 1.27 A; this polymor-
phic modification can be stabilized at high temperatures and
pressures.®®! The cumulenic carbyne has the metallic band
structure and DOS (Figs. 5 and 6). Similar to the case of
metallic SWNTs, the Fermi level crosses the band separating

Energy (eV)

o » A M O N A
1l 3 1 3+ Ly 21

Lo oL L4
o o @ H N o
PR TR SRR SR

Number of states (arbitrary units)

FIG. 6. (Color online) Local DOS of pure and B- and N-doped
cumulenic carbyne.
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FIG. 7. (Color online) Local DOS of the perfect and B- and
N-doped (7,7) SWNTS.

the low-energy bonding and high-energy antibonding
states. If the boron or nitrogen atom takes the place of car-
bon, the local DOS at the Fermi level increases in the 27% or
16%, respectively. Only the nitrogen defect gives rise to the
new extremely narrow and high peak about —8.5 eV. A
smearing of band between 4 and 7 eV specifies the effect of
boron.

The SWNTs (13,0), (12,2), (11,3), (10,5), (9,6), and (8,7)
have virtually equal diameters d=10.15+0.15 A; the diam-
eters d=9.48 and 10.70 A of the SWNTs (7,7) and (12,4) are
rather similar too. The SWNTs are known to be characterized
by the “family index” p=n;—n, mod 3. The tubules with p
=0 are metallic or semimetallic, and those with p=1 and p
=2 are semiconductors. Generally, the optical gap energies of
the SWNTs with p=1 are somewhat larger than those of
tubule with p=2.73% Thus, there are the chiral and achiral,
wide-gap and low-gap semiconducting, semimetallic, and
metallic SWNTs in this representative series; moreover, the
LACW band structures of all these tubules were already plot-
ted in our previous work.”! The SWNTs (5,5), (8,2), and
(10,0) is another representative series with metallic, semime-
tallic, and semiconducting SWNTs with smaller diameters
d=741%042 A.

The purely carbon (7,7) SWNT with armchair geometry
has a metallic electronic structure with constant DOS in the
energy region between —0.7 and +0.7 eV relative to the
Fermi level (Fig. 7). Close to the Ep, the electronic structure
is significantly affected by the impurities. However, the bo-
ron and nitrogen defects do not destroy the metallic character
of DOS. In this region, the main effect of the nitrogen impu-
rity is about 50% virtually constant increase in the DOS; in
the case of boron, there is further growth of the DOS. Com-
parison of these results with data for the small-diameter arm-

PHYSICAL REVIEW B 82, 035426 (2010)
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FIG. 8. (Color online) Local DOS of the perfect and B- and
N-doped (5,5) SWNTs.

chair (5,5) tubule (Fig. 8) shows that the impurity-induced
perturbations of the DOSs are very similar independent of
the diameter of armchair SWNTs.

The defect-free chiral (9,6) SWNT belongs to the semi-
metallic family, and there is no gap between the occupied
and unoccupied states according the LACW band-structure
data.”! Moreover, due to the SWNT curvature effects, an
overlap of the bonding and antibonding states equal to 0.15
eV takes place. In the DOS of the perfect tubule, this results
in appearance of the peak exactly at Er (Fig. 9). Upon the
boron and nitrogen substitution, the local DOS in this region
increases. The nitrogen impurity gives the largest DOS at E.
The boron defect smoothens the three-peak structure be-
tween —0.5 and +0.5 eV. The perfect chiral (8,2) SWNT
also belongs to the semimetallic family; however, in this
case, a minigap with E,=0.15 eV is formed because of the
larger curvature of small-diameter tubule.®® As a result, there
is not peak but a dip in the DOS of ideal system (Fig. 10).
The dip at the Ey retains in the DOS of both the boron and
nitrogen dopants in spite of total increase in the local DOS in
the region between —1.0 and +0.5 eV relative to the Fermi
energy.

Figures 11-16 exhibit the influences of the boron and ni-
trogen impurities on the electronic DOSs of the six semicon-
ducting SWNTs with the diameters of 10 A and different
chirality angles. For example, Figs. 15 and 16 show the data
for the boron- and nitrogen-doped and perfect chiral (11,3)
and (8,7) SWNTs having as many as 652 and 676 atoms in
the translational unit cells. In all the semiconducting SWNTs,
in the vicinity of optical gap, a drastic difference between the
effects of the two types of impurities should be emphasized.
The boron-related states clearly close but those of the nitro-
gen atoms do not close the gap of the perfect tubules. In the
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FIG. 9. (Color online) Local DOS of the perfect and doped (9,6)
SWNTs.

gap region, the effects of nitrogen atom are restricted with a
minor growth of the local DOSs just below and above the
Ep. Figure 17 shows that this is also truth for the semicon-
ducting small-diameter SWNT (10,0).

(eV)

MNONORORM®
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1

C B

YRR
ANOOWOANOOOOD S
U S I I I I R .

N (82
Number of states (arbitrary units)

1
N

FIG. 10. (Color online) Local DOS of the perfect and doped
(8,2) SWNTs. Here and below, the E, values shown correspond to
the perfect tubules and are derived from the LACW band-structure
calculations (Ref. 71).
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FIG. 11. (Color online) Local DOS of the perfect and doped
(10,5) SWNTs.

Beyond the Fermi-energy region up to the s bottom of the
valence bands, the effects of impurities are more or less simi-
lar in all the tubules. As one goes from carbon to the boron,
the local DOS within the MT sphere decreases, and the peaks
almost disappear. Generally, the effects of nitrogen defect are

B Eg=0.46 eV

< ——

C B

N
(12,4)
Number of states (arbitrary units)

FIG. 12. (Color online) Local DOS of the perfect and doped
(12,4) SWNTs.
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FIG. 13. (Color online) Local DOS of the perfect and doped
(13,0) SWNTs.

opposite; the nitrogen local DOS is somewhat greater than
that of the carbon, and there is no significant smoothing of
the DOS picture.

It would be very interesting to compare the results of the
Green’s function LACW technique designed for a single de-
fect to those obtained by the usual supercell plane-wave

22 1cC B N (12,2)

Number of states (arbitrary units)

FIG. 14. (Color online) Local DOS of the perfect and doped
(12,2) SWNTs.

PHYSICAL REVIEW B 82, 035426 (2010)

—_———

e
2 7
-4
-6:
-8 ]
-10 1
-12 1
-14 1
-16 1
-18 1
-20 1
221 C B

N (11,3

Number of states (arbitrary units)

FIG. 15. (Color online) Local DOS of the perfect and doped
(11,3) SWNTs.

pseudopotential DFT method for array of impurities. Unfor-
tunately, the possibilities of this comparison are greatly lim-
ited because there are the pseudopotential calculations of the
achiral nanotubes only. (The unit cells of the chiral SWNTs
contain too many atoms for the plane-wave pseudopotential

4
-6
-8

-10

12

14

-16

-18

-20

22 °C B N

-24 (8.7)

Number of states (arbitrary units)

FIG. 16. (Color online) Local DOS of the perfect and doped
(8,7) SWNTs.
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FIG. 17. (Color online) Local DOS of the perfect and doped
(10,0) SWNTs.

method which suffers from a slow convergence and an unfa-
vorable scaling: the number of basis functions and time taken
to perform such a calculation on a computer increases as-
ymptotically with the cube of the number of atoms in the
cell.?)

For example in paper,> the electronic structure of the
(10,10) SWNT with boron and nitrogen impurities was cal-
culated in the terms of the ab initio plane-wave nonlocal

GF-LACW
N
Z | N
=
o
3
= GF-LACW
S
= B
[
&,
[72]
. PP-PW
S
w
s N
—
[«
=
S PP-PW
=
k .
-0.5 0 0.5
E (eV)

FIG. 18. (Color online) Local DOSs of the doped (10,10)
SWNT calculated using the plane-wave pseudopotential and
Green’s function LACW methods.
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pseudopotential method, the supercell of 10-20 A in each
direction being used. Figure 18 shows the local DOSs for the
Fermi-energy region of the boron- and nitrogen-doped
(10,10) SWNTs calculated using this approach together with
the Green’s function LACW data. The overall structures of
the local DOSs are similar; particularly, both methods predict
that introduction of impurities does not result in a formation
of the forbidden gaps. However, there are important differ-
ences. The pseudopotential calculation of the local DOS
around the boron impurity predicts a double peak with maxi-
mums at —0.7 and —0.8 eV below the Fermi level as well as
a sharp peak above this level at 0.75 eV. In the pseudopoten-
tial local DOS of the nitrogen impurity, a position of these
bands is opposite to the boron case, the double-peak band is
located above and a single peak below Fermi level. Note that
a form of all these bands having very sharp edges is typical
for the Van Hove singularities in the one-dimensional peri-
odic systems. This seems to be an artifact of theory deter-
mined by the interaction of defects in supercell geometry
used. It is pointed in the paper>® that spatial extent of the
wave functions corresponding to the impurity-related bound
states with energies of —0.7 and 0.5 eV for boron and nitro-
gen impurities equals to 10 A; the spatial extent of the wave
functions corresponding to the states with binding energies
equal to —0.8 eV and +0.8 eV for the boron and nitrogen is
roughly 200 A and 50 A, respectively. Thus, the delocaliza-
tion of functions is strong enough to guarantee a coupling
between the neighbor impurities. The double-peak structures
in the local DOSs of impurities can be understood as the
bonding and antibonding combinations of the impurity orbit-
als. In the Green’s function LACW DOSs, one observes the
analogous bands located in the same energy regions as in the
case of the plane-wave pseudopotential theory but the bands
are obviously broadened and their splitting disappears as it is

1.2 1
0.8 1 C

eV)

~

2 0.4 1 N
0 B

-0.4

-0.8 1

Energ

B N
(10,10)

Number of states (arbitrary units)

FIG. 19. (Color online) LACW local DOS of the perfect and
doped (10,10) SWNTs.
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expected for the single impurity. Finally, it is to be noted that
the plane-wave pseudopotential calculations are restricted
with a vicinity of the Fermi level but the LACW approach
permits calculating the electronic structure in a wide energy
range from the conduction band up to the bottom of the
valence s band (Fig. 19).

IV. CONCLUDING REMARKS

We have developed the distinct method for the realistic
theoretical studies of electronic structure of the SWNTs with
point defects and performed calculations of local DOS for
the substitutional boron and nitrogen impurities in the variety
of the SWNTs. The calculations are based on the linear aug-
mented cylindrical wave Green’s function method and the

PHYSICAL REVIEW B 82, 035426 (2010)

local-density functional and muffin-tin approximations for
the electronic potential. It is of great importance that the ab
initio method is developed which is applicable to any SWNT
including the chiral ones with very large translational unit
cells. The method realized in the terms of the single-site
approximation can be extended to the cases where the poten-
tials of the neighboring atoms are also disturbed and the
atomic structure relaxations are allowed.
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